Modèles génératifs pour l’image

The goal of this course is to present and study generative models that can be used for various image generation tasks. The first part of the course will focus on models relying on an adversarial framework, namely Generative Adversarial Networks

Deformable models and geodesic methods for image analysis

A large overview of methods and algorithms of deformable models for image segmentation, illustrated by concrete applications Presentation : here

Imagerie fonctionnelle cérébrale et interface cerveau machine

Ce cours porte sur l’imagerie cérébrale fonctionnelle et son application à la réalisation d’interfaces cerveau-ordinateur à partir de deux techniques non-invasives qui permettent l’activité cérébrale. la M/EEG mesure le champ électromagnétique créé par les courants électriques corticaux ; l’IRM fonctionnelle

Nuages de Points et Modélisation 3D (NPM3D)

Il s’agit de faire un panorama des concepts et techniques d’acquisition, de traitement et de visualisation des nuages de points 3D, et de leurs fondements mathématiques et algorithmiques. Présentation : Cliquez ici  

Audio signal processing – Time-frequency analysis

Initiation to several signal processing techniques specific to audio processing

Remote sensing data: from sensor to large-scale geospatial data exploitation

Provide a good understanding of earth observation systems and their mathematical modeling (optic and SAR satellite sensors), with a focus on data processing for elevation recovery (stereo-vision and SAR interferometry) and time series analysis. Handling of real images from space

Biostatistics

The course aims at introducing both concepts and methods used in clinical (or medical) research. It is integrated to the health science theme of the master program.The course will both emphasize the principles and concepts underlying the different goals of

Deep Learning

With the increase of computational power and amounts of available data, but also with the development of novel training algorithms and new whole approaches, many breakthroughs occurred over the few last years in Deep Learning for object and spoken language

Advanced learning for text and graph data ALTEGRAD

The ALTEGRAD course ( 28 hours) aims at providing an overview of state-of-the-art ML and AI methods for text and graph data with a significant focus on applications. Each session will comprise two hours of lecture followed by two hours

Introduction to statistical learning

The course presents the mathematical foundations for supervised learning.